

A ¹³C Labeling Strategy Reveals a Range of Aromatic Side Chain Motion in Calmodulin

Vignesh Kasinath, Kathleen G. Valentine, and A. Joshua Wand*

Graduate Group in Biochemistry and Molecular Biophysics and the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States

Supporting Information

ABSTRACT: NMR relaxation experiments often require site-specific isotopic enrichment schemes in order to allow for quantitative interpretation. Here we describe a new labeling scheme for site-specific ¹³C-¹H enrichment of a single ortho position of aromatic amino acid side chains in an otherwise perdeuterated background by employing a combination of [4-13C]erythrose and deuterated pyruvate during growth on deuterium oxide. This labeling scheme largely eliminates undesired contributions to ¹³C relaxation and greatly simplifies the fitting of relaxation data using the Lipari-Szabo model-free formalism. This approach is illustrated with calcium-saturated vertebrate calmodulin and oxidized flavodoxin from Cyanobacterium anabaena. Analysis of ¹³C relaxation in the aromatic groups of calcium-saturated calmodulin indicates a wide range of motion in the subnanosecond time regime.

Nuclear magnetic resonance (NMR) relaxation has proven to be a versatile probe of the link between fast internal protein motions and their relevance to function. ¹⁻⁴ The motions of the polypeptide chain or of the amino acid side chains in proteins of significant size are most often studied using ¹⁵N relaxation of amide nitrogen and deuterium or carbon relaxation in methyl groups.^{2,3} This is generally due to restrictions arising from requirements of isotopic labeling and unfavorable relaxation properties of some sites within proteins. In other contexts, more specific and tailored enrichment schemes are often vital in order to eliminate unwanted dipolar and scalar interactions as well as to simplify data interpretation. Examples include the use of [3-¹³C]pyruvate, ⁵ [2-¹³C]glycerol, or [1,3-¹³C₂]glycerol ^{6,7} or mixtures of singly ¹³C-enriched acetates⁸ as carbon precursors to generate isolated ¹³C spins. Even more selective spin enrichment schemes are sometimes required in order to suppress unwanted spin interactions and often employ more complex biosynthetic precursors. Prominent examples include labeling schemes targeted for optimal relaxation in methyl groups. 5,9,10 Comprehensive chemical synthesis, though relatively expensive, has also proven viable.¹¹

Here we focus on the use of NMR relaxation phenomena to characterize the fast subnanosecond motion of aromatic residues. Aromatic amino acid side chains have a rich structural role within proteins ^{12–15} and are often central to their biological function, particularly in the context of molecular recognition ^{16,17} and catalysis. ¹⁸ Thus, the motional character of aromatic residues would seem to be of central importance in a range of protein

structure—function issues. In this context, NMR phenomena have long been used to characterize relatively slow motions that are manifested in line broadening or population exchange.¹⁹

For classical relaxation phenomena used to probe fast

subnanosecond motions, aromatic residues present a difficult situation. In addition to the concern about the isolation of the spin interaction of interest from extraneous contributions, aromatic ring systems suffer from extensive homo- and heteronuclear scalar (*J*) interactions that can also significantly complicate the quality and information content of the obtained relaxation data. Previously, [1-13C]- or [2-13C]glucose has been used to create isolated ¹³C sites in aromatic side chains and thereby eliminate one-bond ¹³C–¹³C interactions. However, this labeling scheme does not eliminate remote scalar or dipolar interactions with nonbonded ¹H spins. ^{20–22} In our hands, the [1-13C]glucose labeling scheme, which is designed to place isolated $^{13}\mathrm{C}$ at the δ position, results in minor scrambling of the label that confounds the subsequent analysis to some extent (see below). In addition, though anticipated to be less of an issue than for methyl ¹³C relaxation studies, ^{9,23} the presence of remote ¹H spins does present a complication in the analysis of aromatic ¹³C relaxation in proteins. Isolation of the 1H-13C pair in an otherwise perdeuterated background would eliminate potential complications from dipolar interactions with remote ¹H spins as well as scalar couplings with other ring hydrogens. Labeling strategies based on glucose are unable to provide this labeling scheme. To overcome this limitation to a large extent, we have developed a biosynthetic strategy that takes advantage of the flow of carbon from erythrose 4-phosphate to Tyr, Phe, and Trp through condensation with phosphoenolpyruvate during biosynthesis ²⁴ (Figure 1). Consideration of this pathway suggested that the use of [4-13C]erythrose as the sole source of 13C in conjunction with deuterated (12C)pyruvate should lead to the creation of an isolated bonded $^{1}H^{-13}C$ pair at a single δ position (the C2 position) within the aromatic ring. Protein expression during growth on [4-13C]erythrose, deuterated (12C)pyruvate, and 99% D₂O should allow for exchange of all other nonaromatic hydrogens while preserving that bonded to the target ¹³C. In the case of phenylalanine and tryptophan, an additional ¹H spin is predicted to remain at the ζ (C4) position of the benzoid ring. Fortunately, this spin is greater than 3 Å away from the sole ¹³C nucleus, rendering its contribution to relaxation negligible. All of the other aromatic carbons remain NMR-inactive ¹²C nuclei. This labeling pattern should therefore largely eliminate the

Received: January 5, 2013 Published: June 17, 2013

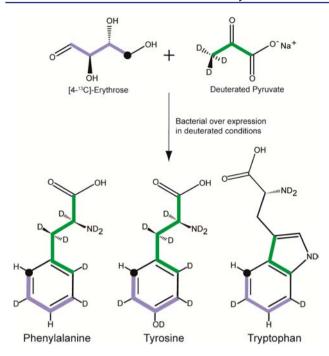


Figure 1. Carbon inflow into the aromatic pathway through the condensation reaction of erythrose 4-phosphate and phosphoenolpyruvate. Carbons originating from pyruvate and erythrose are shown in green and purple, respectively. The position of the 13 C label is indicated by the \blacksquare symbol.

potential complications of extraneous intraring scalar or dipolar interactions (¹H or ¹³C) with the isolated ¹³C spin. The low gyromagnetic ratio of the replacement deuterons should cause them to contribute insignificantly to relaxation of the isolated ¹³C nucleus. Similarly, the contribution to the measured relaxation of the target ¹³C nucleus from random ¹³C at natural abundance should also be negligible.

Vertebrate calmodulin was expressed in Escherichia coli²⁵ to test this strategy. (12C, 2H)pyruvate was used to suppress scrambling of 13C to other amino acids and to aid in perdeuteration of the aromatic ring. One-dimensional (1D) ¹³C-filtered and unfiltered ¹H spectra revealed essentially complete deuteration of the protein except at single δ positions in Tyr and Phe residues and the ζ position of Phe (Figure 2). No protonation at the ε (C3, C5) positions of the aromatic ring was observed. $^{13}\mathrm{C}$ labeling was restricted to the δ positions of Tyr and Phe. The enrichment of $^{13}\text{C}-^{1}\text{H}$ pairs at the δ position was determined by comparison of the unfiltered and ¹³C-filtered ¹H spectra with and without 13C decoupling and was found to be uniformly 67% [Figure S1 in the Supporting Information (SI)]. Analysis of the 1D 13C spectra with and without 1H coupling confirmed that the isolated ${}^{13}C_{\delta}-{}^{1}H$ was not diluted with ${}^{2}H$ from the solvent (Figure S3). The underlabeling of ¹³C is a consequence of using a (12C, 2H)pyruvate/[4-13C]erythrose ratio of 3:2, which was motivated by the need to suppress scrambling of ¹³C to other amino acids or other positions in the aromatic rings. This is a reasonable price to pay to maintain the fidelity of the ¹³C nucleus for relaxation studies.

Calmodulin does not contain tryptophan. To confirm that appropriate labeling of Trp was also achieved, flavodoxin C55A was similarly prepared. Flavodoxin has four Trp, eight Tyr, and eight Phe residues along with one His residue. The 22 anticipated aromatic $^{1}H^{-13}C$ correlations were seen in the ^{13}C heteronuclear single-quantum coherence (HSQC) spectrum (Figure S4). No

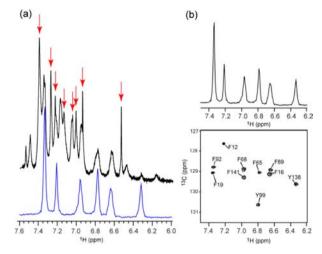
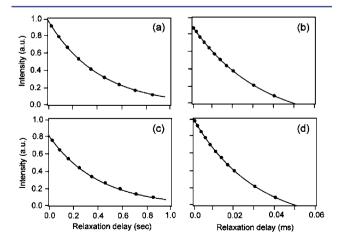



Figure 2. (a) Comparison of the aromatic regions of the 13 C-filtered and -decoupled 1D 1 H spectrum (lower, blue) and the unfiltered 1 H spectrum (upper, black) of calcium-saturated calmodulin expressed during growth on [4- 13 C]erythrose, deuterated pyruvate, and D₂O, indicating the selective introduction of a 1 H- 13 C pair at a single δ carbon of Phe and Tyr. Also evident are resonances arising from H bonded to 12 C at the ζ position of the aromatic ring of Phe (red arrows). These resonances have narrow line widths because of the absence of scalar coupling. A more detailed analysis of the 1 H spectrum is presented in Figures S1 and S2. (b) 2D 13 C HSQC spectrum of the aromatic region and the corresponding 1D 1 H spectrum (13 C-filtered). No significant 13 C labeling of other amino acids was observed.

other significant ¹³C labeling was observed. Thus, the desired labeling pattern was observed for all four aromatic amino acid side chains in the context of a perdeuterated background.

 13 C R_1 and $R_{1\rho}$ relaxation in calcium-saturated calmodulin prepared using this labeling strategy was measured at three magnetic fields (11.7, 14.0, and 17.6 T) using standard two-dimensional (2D) sampling pulse sequences. 10 For comparison, similar measurements were done using calmodulin prepared with a labeling strategy based on [1- 13 C]glucose 27,28 (Figure 3). The anisotropy of global macromolecular tumbling was characterized in the usual way 29 using the crystal structure of calcium-saturated calmodulin (PDB entry 3CLN) and assessing the two globular domains separately. 30

Figure 3. Aromatic ¹³C R_1 and $R_{1\rho}$ relaxation in calcium-saturated calmodulin prepared using (a, b) the [4-¹³C]erythrose/deuterated pyruvate/D₂O strategy and (c, d) a [1-¹³C]glucose strategy. Relaxation at the $\delta 2$ position of F92 is shown.

Table 1. Lipari-Szabo Model-Free Parameters for Aromatic Ring Motion in Calcium-Saturated Calmodulin^a

probe	O^2	$\tau_{\rm e}~({\rm ps})$	probe	O^2	$\tau_{\rm e}~({\rm ps})$
F12 ^b	0.49 ± 0.03	236 ± 21	F89 ^c	0.94 ± 0.02	900 ± 39
F16 ^{b,d}	0.95 ± 0.01	127 ± 12	F92 ^c	0.72 ± 0.03	624 ± 23
F19 ^b	0.47 ± 0.01	232 ± 19	Y99 ^c	0.79 ± 0.02	240 ± 21
F65 ^b	0.70 ± 0.04	176 ± 23	Y138 ^c	0.89 ± 0.02	604 ± 36
F68 ^b	0.96 ± 0.01	292 ± 17	F141 ^c	0.95 ± 0.01	101 ± 11

"Prepared using the [\pm^{13} C]erythrose labeling scheme. Model-free squared generalized order parameters (O^2) and effective correlation times (τ_e) were determined using the simple model-free spectral density, an effective C–H bond length of 1.09 Å, and the axially symmetric and fully anisotropic chemical shift anisotropy (CSA) tensors for 13 C $_\delta$ of Phe and Tyr, respectively, as determined by Ye et al. Accomplex labeling was characterized using 15 N relaxation with an effective N–H bond length of 1.04 Å and a simple uniform 15 N CSA tensor breadth of 12 0 ppm. The N- and C-terminal domains were treated separately. The precisions of O^2 and τ_e were estimated by Monte Carlo sampling. Part of the N-terminal domain with an effective macromolecular tumbling time of 8.96 \pm 0.14 ns. Part of the C-terminal domain with an effective macromolecular tumbling time of 8.05 \pm 0.10 ns. Because of partial spectral overlap, only data obtained at 17.6 T were fitted.

Lipari-Szabo model-free squared generalized order parameters (O^2) and effective correlation times (τ_e) were determined using a grid search approach³⁵ employing an effective bond length of 1.09 Å and residue-specific chemical shift anisotropy (CSA) tensors³² with axially symmetric and anisotropic³⁶ CSA values for Phe and Tyr, respectively. The analysis was carried out with an updated version (Relxn2A) of our in-house software. 23,35 Standard statistical F tests were used to determine whether R_{ev} terms were justified, and none were found. The contributions from ¹³C-²H remote dipolar coupling and ¹³C-¹³C dipolar interactions due to natural-abundance ¹³C amounted to less than 0.05% of the ¹³C-¹H direct bond dipolar interaction. Relaxation data obtained from the sample obtained using the [4-13C]erythrose labeling scheme fit well to the simple model-free spectral density (Table 1). The obtained O^2 values ranged from 0.47 to 0.96, indicating a rich spectrum of aromatic ring motion within calcium-saturated calmodulin on the subnanosecond time

In contrast, though the primary R_1 and $R_{1\rho}$ relaxation time profiles derived from the calcium-saturated calmodulin obtained using the [1-13C]glucose labeling scheme fitted reasonably well to single-exponential decays (Figure 3), the obtained relaxation rates largely gave relatively poor fits to the Lipari-Szabo modelfree interpretation (5-10% vs <1% residual error) (Table S3 in the SI). Inclusion of remote ¹H spin dipolar interactions as well as dipolar interactions with ${}^{13}C_{\epsilon}$ failed to recover the excellent statistics of the relaxation data derived from the more optimal [4-13C] erythrose labeling scheme (Figure S5 and Table S3). It seems likely that unaccounted dipolar relaxation, intraring onebond $^{13}\text{C}-^{13}\text{C}$ *J* coupling, and intraring two-bond $^{13}\text{C}_{\delta}-^{1}\text{H}_{\epsilon}$ *J* coupling effects contaminated the measurement and interpretation of ¹³C relaxation in structured proteins in the protonated background. This is consistent with the presence of additional peaks in the ${}^{13}\mathrm{C}{}^{-1}\mathrm{H}$ HSQC spectrum of calmodulin derived from the [1-13C]glucose labeling scheme (Figure S6). These additional peaks arise from partial ¹³C labeling (8–15%) at C_{ε} of the aromatic ring and are a consequence of the scrambling of the ¹³C label when glucose was used as the carbon precursor. These considerations provide a plausible scenario where the relaxation profiles still fit reasonably well to single-exponential decays but fail to be fit reasonably by the Lipari-Szabo model-free formalism. Thus, the [4-13C]erythrose labeling strategy described here would seem to be highly advantageous in providing high-fidelity relaxation for the study of fast aromatic ring dynamics.

In summary, we have demonstrated a strategy for producing perdeuterated proteins with isolated ${}^{1}H-{}^{13}C$ pairs in the

aromatic ring systems. It has been shown that the aromatic side chains of calmodulin have a wide range of motion on the subnanosecond time scale, the observation of which has to date been restricted to detection at natural abundance using highly concentrated and relatively small proteins.³⁷ The ability to investigate the fast dynamics of aromatic side chains will provide a highly complementary perspective to that accessed by ¹³C or ²H relaxation in methyl groups.

ASSOCIATED CONTENT

S Supporting Information

Description of the [4-¹³C]erythrose labeling protocol; ¹³C relaxation decay rates for aromatic side chains in calcium-saturated calmodulin collected at 500, 600, and 750 MHz (¹H); and the ¹³C HSQC spectrum of flavodoxin prepared with the [4-¹³C]erythrose labeling strategy. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

wand@mail.med.upenn.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NIH grant GM 102447.

REFERENCES

- (1) Mittermaier, A.; Kay, L. E. Science 2006, 312, 224.
- (2) Jarymowycz, V. A.; Stone, M. J. Chem. Rev. 2006, 106, 1624.
- (3) Igumenova, T. I.; Frederick, K. K.; Wand, A. J. Chem. Rev. 2006, 106, 1672.
- (4) Marlow, M. S.; Dogan, J.; Frederick, K. K.; Valentine, K. G.; Wand, A. J. Nat. Chem. Biol. **2010**, *6*, 352.
- (5) Lee, A. L.; Urbauer, J. L.; Wand, A. J. J. Biomol. NMR 1997, 9, 437.
- (6) LeMaster, D. M. Prog. NMR Spectrosc. 1994, 26, 371.
- (7) LeMaster, D. M.; Kushlan, D. M. J. Am. Chem. Soc. **1996**, 118, 9255.
- (8) Wand, A. J.; Bieber, R. J.; Urbauer, J. L.; McEvoy, R. P.; Gan, Z. H. J. Magn. Reson., Ser. B **1995**, 108, 173.
- (9) Ishima, R.; Petkova, A. P.; Louis, J. M.; Torchia, D. A. J. Am. Chem. Soc. 2001, 123, 6164.
- (10) Tugarinov, V.; Kay, L. E. Biochemistry 2005, 44, 15970.
- (11) Kainosho, M.; Guntert, P. Q. Rev. Biophys. 2009, 42, 247.
- (12) Thomas, K. A.; Smith, G. M.; Thomas, T. B.; Feldmann, R. J. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 4843.
- (13) Burley, S. K.; Petsko, G. A. Science 1985, 229, 23.
- (14) Burley, S. K.; Petsko, G. A. FEBS Lett. 1986, 203, 139.
- (15) Dill, K. A. Biochemistry 1990, 29, 7133.
- (16) Birtalan, S.; Fisher, R. D.; Sidhu, S. S. Mol. BioSyst. 2010, 6, 1186.

- (17) Bogan, A. A.; Thorn, K. S. J. Mol. Biol. 1998, 280, 1.
- (18) Bartlett, G. J.; Porter, C. T.; Borkakoti, N.; Thornton, J. M. J. Mol. Biol. 2002, 324, 105.
- (19) Wüthrich, K.; Wagner, G. FEBS Lett. 1975, 50, 265.
- (20) Boyer, J. A.; Lee, A. L. Biochemistry 2008, 47, 4876.
- (21) Teilum, K.; Brath, U.; Lundstrom, P.; Akke, M. J. Am. Chem. Soc. **2006**, 128, 2506.
- (22) Lundstrom, P.; Teilum, K.; Carstensen, T.; Bezsonova, I.; Wiesner, S.; Hansen, D. F.; Religa, T. L.; Akke, M.; Kay, L. E. *J. Biomol. NMR* **2007**, *38*, 199.
- (23) Lee, A. L.; Flynn, P. F.; Wand, A. J. J. Am. Chem. Soc. 1999, 121, 2891.
- (24) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 6th ed.; Freeman: New York, 2007.
- (25) Kranz, J. K.; Flynn, P. F.; Fuentes, E. J.; Wand, A. J. *Biochemistry* **2002**, *41*, 2599.
- (26) Liu, W. X.; Flynn, P. F.; Fuentes, E. J.; Kranz, J. K.; McCormick, M.; Wand, A. J. *Biochemistry* **2001**, *40*, 14744.
- (27) Kalan, E. B.; Davis, B. D.; Srinivasan, P. R.; Sprinson, D. B. J. Biol. Chem. 1956, 223, 907.
- (28) Srinivasan, P. R.; Shigeura, H. T.; Sprecher, M.; Sprinson, D. B.; Davis, B. D. *J. Biol. Chem.* **1956**, *220*, 477.
- (29) Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A. J. Am. Chem. Soc. 1995, 117, 12562.
- (30) Kuboniwa, H.; Tjandra, N.; Grzesiek, S.; Ren, H.; Klee, C. B.; Bax, A. Nat. Struct. Biol. **1995**, 2, 768.
- (31) Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4546.
- (32) Ye, C. H.; Fu, R. Q.; Hu, J. Z.; Hou, L.; Ding, S. W. Magn. Reson. Chem. 1993, 31, 699.
- (33) Ottiger, M.; Bax, A. J. Am. Chem. Soc. 1998, 120, 12334.
- (34) Yao, L. S.; Grishaev, A.; Cornilescu, G.; Bax, A. J. Am. Chem. Soc. **2010**, 132, 4295.
- (35) Dellwo, M. J.; Wand, A. J. J. Am. Chem. Soc. 1989, 111, 4571.
- (36) Goldman, M. J. Magn. Reson. 1984, 60, 437.
- (37) Palmer, A. G.; Hochstrasser, R. A.; Millar, D. P.; Rance, M.; Wright, P. E. J. Am. Chem. Soc. **1993**, 115, 6333.